.
- -

'COMPLEX NUMBERS AND FUNCTIONS

1. Basic definitions.

The set of real numbers R, together with the algebraic operations of addition and multiplication,
is the main example of an algebraic system known as a “field.* The quadratic equation x2+41 =0

has no real solution, sincex €R = x*+1>0+1=1>0.

We eztend the real numbers R to the “field” C of complex numbers. Suppose there exists a

number i, an ifnaginary unit, not a real number, which solves z2 +1 =0. Thus

L]

d i2=-1.
Enginéers use j for i and matlab responds to either.
The set of complezr numbers C consists of all numbers of thé form
z=x+iy, x,YyER.

We define the arithmetic operations with complex numbers and some related concepts. The
phrase “a : = b” is read “a is defined to be b,” and the phrase “a = : b” means “b is defined to be a.”
Let

z = x +1iy,
z°=x°+iyo, 21=x1+i}'1,
be complex numbers. Then:

a. zg and z, are egual if they are the same complex number, that is if

Xo=x; and yo=y;

We then write
.

b. The sum of zq and z, is

Zo+z; = (xo+i5'o)+(x1 +iy;) -

:= (xo+x1) +ilyo+y1) -

C1

¢. The product of Zg and 2, is defined via the forma.lisn;
ZgZ; i = (xo + iYO)(xl + i}'l) -

= X%, +iXoY; +iyex; + 2 yoy; -
-1

More precisely,

2o2y = (Xo +iyp)(x; + iy,)

= (%% — Yo%) +ilxoy; +¥o%;) .

d. . Re z: = real partof 2
. LY =X
AN =real(z) in matlab.

Im z : = imaginary part of z
=y
=imag(z) in matlab.

e. Z : = conjugate of z
i=x—iy:=x+i(~y)

=conj(z) =z' in matlab

f. 1212 = modulus of 2
: = absolute value of z
= VX +y?
=abs(z) in matlab,
Note that addition and multiplication of complex numbers are commaulative:
) Z5t+2;, = 2y -+ 2, 292 = Z%g .

Here, for instance, the phrase “292; = 2,2,” is short for “20%) = 2,2, identically, for all

2g, 29 € C.” To prove this statement, first swap subscripts to get
220 = (Xy%0 = ¥y¥o) +i(xy¥p + Y1Xo) -
Now use the commutativity of multiplication aﬁd addition of real numbers to get
2120 = (Xo%) — Yov1) +i(¥ox +x‘oY1)
= (xg%; = Yo¥1) +i(xg¥; +¥gx,)

C-2

The complex number z = x +iy is a “real complex number” if y = 0. "Otherwise it is nonreal.
We write ' -

x+il=:x.

If zy = x5 and z, = x; are “real complex numbers” then so are
20 + 21 = xO + xl and 2021 - xOxl-
The arithmetic operations with “real complex numbers® obey the same rules as for the real

numbers. Thus we may identify the “real complex numbers” with the real numbers R. In this

way the “field” of real numbers becomes a subfield of the “field” of complex numbers.

The matlab command is real (z) delivers 1 (true) if z is real and 0 (false) if z is nonreal.
"

Ifce Rand z = x+1iy € C, then
cz : = (c+i0)(x +iy)
= (ex — 0y) +i(0x + cy)
= (ex) +i(ey)
= (xc¢) +i(yc)

=1zc,

and if ¢ #£ 0 then

Ofr=

c = (x+iy)(L+i0)
=@-y-0)+i(f+x-0)
=@+i(})

The complex number x + iy is imaginary if x = 0. We write
O+iy=:iy.

When numerical values are given for x and y it is customary to write x +1iy as x -+ yi.

Matlab does this. In any case either notation is acceptable.
We also put

x+i:=x+1i.

C3

In particular,

- i:=041i

so
i :=1-i=(0+1i)(0 +1i)
:=(0-0-1-1)4i(0-1+1-0)
=—1+0i
=-1,
as promised.

The only complex number which is both real and imaginary is the additive identity element.

Y
H

- 0:=0+0i.
We have
2+0=2=0+z
(identically for aliz € C). |
If 2 € C, then the equation
at+z=0
has the unique solution

z=-a:=-Rea—ilm a
:=(~Re 2) +i(-Im a) ,

the additive inverse of a. This can be seen by equating real and imagina;y parts:
2a+2=0 <> Rea+Rez=0, . Ima+Imz=0.
The multiplicative identity element is
1:=1+40i.
We have
z-l=z2=1-2.
Note that in general

2% = (x +iy)(x ~iy)
=x24y?
=1z
>0 ifandonly_ifz#o.
C4

If a € C with a2 # 0, then the equation .

az=1 -

has the unique solution
1 z
z=5=—5
& af’

the multiplicative inverse of a. We treat the more general case of complex division, carefully from
a computational point of view, in the next section. But the formula is easily remembered by the
" formalism '

o
‘\

More génerally,

ol
|
o
oo

__II
=5
=
o
++

=

Ezemples.

. Lo 1 1-i_ 1-i _1

-1
THI-T+11-1 12412 2 2"

o, li_1+4il+i (Q-D+A+Di_.
N P Tl R i I 12412 -

g 142 _1+2i1-j_ (1+2)+@2-1i_3+i
Tl T 141 117 12412 -2

=%+%1.

Observe that |z]=1 < 1=|zP =2%. Thus

1zl=1 & %:'i .

We have shown, mathematically, how to'éompute our first non-trivial complex function
f(z) = %— We have .
f(z) = Z_ z#+0
(2) 12'2 ' ?é

=00, 2=0.

C-5

"2, Complex division by Gauss factorization.

- We show how to compute the quotient

wi= ;-lq (z; #0).
This is equ.ivalent with solving the equatiqn
2w =125,
that is '
(x; +Hiyy)(u +iv) = x, +iyo)

forw=u+ i,v{ Equate real and imaginary parts to get .

- Xu—y;v=2x,

Yiu+xv=y,,
that is,

N v | %

- L
i ox v Yo
a real linear system of two equations in two unknowns and a very special matriz. One way to solve
this system is via Gauss factorization with complete pivoting. We don’t recommend partial pivoting
as a general strategy but here, because of the special form of the matrix, the two Pivot strategies are
the same.

If|x, |2]¥1] the pivot is already in place and we factor

This requires

Thus we compute

Thus we must now solve

for u and v. But, as is easily checked, we have | -

1 1 R R 1
-t 1 ¢ 1 1 ¢ 1 || -¢ 1

so this linear systém is equivalent with the upper triangular system

~8xy+Yg |

.\
We now backsolve for v and u:

Yo— +yv
V= oglxo, “=x_°'f{"!“'

If |x; | <]y | then we swap the two equations to get

yi X ul_| Yo
-]
X3 ™h v Xo
that is,
i X ul | Yo
X3 N -V Xo

This is like our original system but with the x; and y, (k =0, 1), and v and —v, interchanged.

Thus if | x; | <|¥1| we compute

and then

The flop count for this algorithm is
36+3u+3a+1y=6p+3a+1y=10¢

where § denotes divisions, u multiplications or multiplicative operations (i ¢ §), a additive

operations, o comparisons and ¢ flops (floating point operations). We have described our code

C-7

cquotient for complex division.

Of course in the first case say, for |X1]2]¥1])s we have

Y1
£=Yl-,
: 2 2,.2
Y1 _Xi+y
g=x by =x +g=-1g1,
Y1%p
v Yo—&xy Yo7
& xi+y:
X
v =Yoo~ ¥1Xo ,
\ x? +y?
and
X1Y0— Y1X0
+y H5—=0
.-'_"‘0'1"1’1"'_xo ! xi+y:
V== X3

= XoXE + Xg¥] +Xy¥oy; - %0y
| x (x2+3)

__ XoX1 +Yo¥q
u -_T_Z .
X3 +y1

The final formulas for u and v are the same as those obtained from

s _Z9_20Z 2p%
w=u v = = == ==
+ LThE lle
These formulas cannot be used directly, numerically, because computation of the squares, xf
and/or yf, can cause artificial overflow or underflow and ruin the algorithm.
Smith’s

algorithm, our code cdiv, is somewhat like ours. It computes u and v as follows:
if]x; |2y :
¢=y1/x;, d=x+y,
Xo+ &y Yo— ¢
u=X0 o, v=lom

else

C-8

€=x1/y1, d=¢xl +y1, -

a=otYe- | _Ho—X
e S A W

end

We merely divide the numerators and denominators by x, or Y1 whichever absolute value is
larger, and do the computations “wisely.” Note that d =g! This uses the same work as our

algorithm. It seems a slight bit more elegant. But neither is “perfect”!

Besides the obvious practical importance of this section we observe that the real 2-vector

x
_ Z:=
" y
and special real 2 x2 matrix

. x -y

A i=
x

~ associated with the complex number
z=x+ﬁ

arose in a natural way.

+ 8. Computing w = 1/z, z € C.
We put z=x+iy and w =u+4iv. We want
w=z,
that is,
(u+iv)?=x+iy,
that is, equating real and imaginary parts,
2_ 2

w—vi=x, 2uv=y.

If w is a solution so is —w. We insist that u> 0. Ify = 0 we take

Suppose y # 0. We may then take u >0. -

C9

It is convenient to scale by 2. Since IEEE arithmetic is binary this causes no rounding errors.
Thus let . '

§:=% n:=% (:=¢+ip).

Then our equations are

Elim.ina.te v= g:

2
wl-Ty=2¢,

"t u4—-2£u2-r)2=0.

~

Solve for u?:

_ 22 14"
=)

u2

=fxVE+y

=E:tl(l

Since 1 # 0 we must have the upper sign:

[

u=+/(|+&, v=

This is a mathematical solution of our problem. But it is unsatisfactory numerically when E<0

because of cancellation. But then

-) Vet ¢
|(|+E—(sz+ﬂ!+€)m
7 |
REEGESE
: —__Inl
b VICI-!-]EI

and

v=sgnn (e, u=7|.

C-10 -

Y

Now, to protect against artificial overflow and underflow, |¢]is normally computed as

-
- -

2
Kl=le] 1+(§). l€lz1a1

AN |
=|n] 1+(‘77)’ l€l<n)-

This means that

s:=[¢|+]¢]
should be computed as “

[y

e s=|e|(1+‘/;n@),. .Ielzm
=n;(|%|+J:(?f). l£.l<.l»ﬂ,l-

The stable algorithm is then completed by

t = sqrt(s)
if§>0
u=t, v=gft.
else
u=|n|/t, v=tsigng
end

" This was a description of our matlab code csqri.
4. Matlab Codes and Diary

function z = cquotient (z0, z1)

z = 20/z1 is the guotient of the complex numbers z0 and z1. z is computed stably using
Gauss factorization with complete pivoting followed by forward and back solution. See also cdiv.

Algorithms cdiv and cquotient require the same work. They are also quite close with respect to
accuracy. They are both slightly better, in this regard, than matlab’s complex division. Which
one to choose is a- (not extremely important) open qustxon '

Copyright (c) 27 April 1991 by Bill Gragg All rights rwerved

cquotlent calls no extrinsic functions.

c-11

begin cquotient, .
a =real(z1); b=imag(zl); u= real(z0); v = imag(20);

if abs(a) < abs(b) - <
E=a/b; g=fra+b;, y= (v —u)fg; x= (v — axy)/b;
else ‘

&=bfa; g=a4bsb; .y= (v—ta)/g; x=(u+ bxy)/a;
end :

2 = X + ixy;

end cquotient

Total flops: 3 adds + 6 mults + 1 comparison of absolute values of real numbers.

function w = cdiv(z0, 1)

w = 20/z1%is the quotient of the complex numbers z0 and z1. w is computed stably, roughly
as matlab shoul_d be computing it. :

Copyright (c) 27 July 1991 by Bill Gragg. All rights reserved. Revised 15 March 1993.

cdiv calls no extrinsic functions.

begin cdiv
a =real(z0); b =imag(z0); x= real(zl); y= irhag(zl);

- if abs(x) < abs(y) :

=x/y; d=xst+y; u=(ast +b)/d; v = (bst — a)/d;

else '
t=y/x; d=x+yst; u=(a+ bat)/d; v = (b — ast)/q;

end :

W =u + I*v;

end cdiv

Total flops: 3 adds + 6 mults + 1 comparison of absolute values of real numbers. -
'Remarks:

The algorithm is surely straightforward. Thus, if it is to be named after someone, perhaps
“Smith” is appropriate. But there seems to be no reference to any paper by Smith. The .
algorithm is given as an exercise in Knuth [2). The algorithm was publicized in [1}, a0 expository
Ppaper about what every person who uses it should know about floating point arithmetic.

Added 10 January 1996. Smith’s algorithm was actually published in [3)]. See also [4] for
remarks on the algorithm. :

References:

[1] David Goldberg, What every computer scientist should know about ﬂéating—point arithmetic. .
ACM Computing Surveys 23 (1991) 5-48.

[2] D. Knuth, The Art of Computer Programming, Volume 2. Addison-Wesley, Reading, MA,
1969. ' . :

[3] Robert L. Smith, Algorithm 116: Complex division. Comm. ACM 5 (1962) 435.
[4] G.W. Stewart, A note on complex division. ACM Trans, Math. Software 11 (1985) 238-241.

C12

Diary cdiv. Computation of quotients of complex numbers in three different ‘ways, on an IBM type
PC and an HP work station. '

1. On the PC, with matlab 4.2.

20 = rand(10000,1) -+ i*rand(10000,1);

z1 = rand(10000,1) + i*rand(10000,1);

wq = zeros(10000,1); wd = zeros(10000,1); :

for k = 1:10000 wq(k) = cquotient(z0(k),z1(k)); end

for k = 1:10000 wd(k) = cdiv(z0(k),z1(k)); = end

wpe = 20./21; % We don’t know what matlab does here! :

eps = machprec % This is my, and Lapack’s, machine precision. It is half of matlab’s

eps = % eps. ' '
1.110223024625156e—016 :

[w ww] = div1(z0,21); % The “true” quotients computed with sep (simulated extended precision)

% arithmetic. . .

eq = sﬁbZl(w,va,wq). /w; eq = max(abs(eq))/eps % The rounding errors computed

eq= . " . % with doubled precision.

2.96488082450659 , .

ed = sub21(w,ww,wd)./w; ed = mex(abs(ed))/eps

-
- - . -

2.74114661503672 % cdiv is slightly better than cquotient.
epc = sub21(w,ww,wpc)./w; epc = max(abs(epc))/eps
epc =
0.97517967678905 % Substantially better than our algorithms, but this is because the
% Intel-matlab combination uses arithmetic that is frequently better,
diary off % but sometimes only slightly worse, than ideal IEEE. When doing the
% division it (presumably) uses a code like one of ours, but it uses an
% extended precision to do the arithmetic until it finally rounds the
% results to working precision to store them. So this is not & fair test
% for our algorithms. It would be better if all machines did their
% arithmetic the same! '

2. On the HP, with matlab 4.0a.

>> z0 = rand(10000,1) + i*rand(10000,1); % different random numbers!
>> z1 = rand(10000,1) + i*rand(10000,1);
>> wq = 2eros(10000,1); wd = zeros(10000,1);
>> for k = 1:10000 wq(k) = cquotient(z0(k),z1(k)); end
>> for k =1:10000 wd(k) = cdiv(z0(k),21(k)); - end
© >> whp = 20./z1; '
>> eps
eps =
1.1102¢-16
>> [w ww] = div1(z0,21);
>> eq = sub21(w,ww,wq)./w; eq = max(abs(eq))/eps
eq = ,
2.7890
>> ed = sub2l(w,ww,wd)./w; ed = max(abs(ed))/eps
ed = -
2.7340 % cdiv is again very slightly better than cquotient.
>> ehp = sub2l(w, ww,whp)./w; ehp = max(abs(ehp))/eps
ehp =
4.0288

C-13

The HPs do ideal IEEE arithmetic. Our algorithms are better than whatever algorithm matlab s
using (again, they don’t tell us!). QED (and so ends the demonstration).”

Such experiments are no proof that the algorithm does its job. That involves rounding error

analysis (not hard) and the presumption that the machine does’its Basic arithmetic correctly (cf
the recent “pentium fiasco”). Again, all floating point arithmetic should be the same, ideal IEEE
arithmetic, .

function w = csqrt(z)

w is the principal branch of the square root of the complez number z, computed stably.
We have Re(w) > 0 unless z is zero or a negative real number in which case w = jv
with v >= 0. : '

Copyright (c) 20 July 1991 by Bill Gragg. All rights reserved, Revised 18 March 1993.
csqrt calls no extrinsic functions.
begin csq.&\ '

x = reaf(z);' y= imag(z);.

ify == .
x>0
u =sqrt(x); v=0;
else
u=0; v =sqrt(~x);
end
else

signx = sign(x); x = abs(x)/2;
signy = sign(y); y = abs(y)/2;

ifx>y
r=y/x; s=xx(1+sqrt(l + r+1));
else -

r=x/y; s=yx(r-+ sqrt(l + r+1));
end

t = sqtt(s);

if signx > 0

u =t v =y/t;
else :
u=y/t; v=t;
end

v = vasigny;
end
W= u + ixv;

end csqrt

Total flops: 2 sqrts + 2 divs + 2 mults + 2 adds + 2 comps.

C-14

Problem Sel C -

Letzg=1+2iandz; =1-i '

a. Compute Re zy, Re z;, Im zy, Im 25, Z, 2y, |Zp| and |z].

b. Compute zy+2;, 2g9—25, ZgZp 215’ 21? -:-‘i’-, -:%, zD-(%) and z; (-ZLO)
[Note: zp—3z; : =2g+(~2;)] '

Show that

b

atb=z+b, ab
(identically, for all a, b € C).
. ‘) .
The ;.oowe;‘s of 2 € C are defined by

28 :=3g-z---2, n=0,12,....
n times
a. Computei®,n=0,1,2,38,4,....
b. Show that

Let

Show that:
a |wi=1,

5+ /5
b, wiz_¥0+1, . V3

4 N ES

c. w=w?,
d wi=w,

e. Wo=1.

Consider the complex n xn linear system
Cz=c (%)
with

C15

C=A+iB, c=a+ib, z=x+iy.

Suppose you can’t find any codes for solving complex linear systems. Show that () is

-

equivalent with the real linear system
A -B X a
= (*+)
B A y b -

(This uses dlock multiplication.)

(Continuation) The flop count for solving an n x n linear system is about & T (pF +ap). So the
count for solving () is about L~ (pc + e () with the subscripts C denoting complezr operations.
Show that' thzs is —(pR + ap) with the subscript R denoting real operations. How much do we

lose by solvmg (++) in real arithmetic?

Show that (see page 9):
1
2. z=A,e, with e 1= 0 the first axis vector.

b. det A, =1z = ||z||2 (square of the Euclidean norm of z).
¢ Ayt = Aagap Aaghay = Aoy

d. A=A/ (the transpose of AL).

& AA =AAl=12PL =z

A guaternion can be described as a matrix of the form

a -b :
Q= , 3, beC.
b =
Show that the sum .and product of two quatermons are again quatermons and that guaternions

do not commute under multiplication.

The point of 7c is that the real qua.termons are just a disguised form of the complex numbers.
The quaternions can be generalized further, to “Cayley numbers.” We use (cpmplex) quaternions

withjaP +|bP=11in computational linear algebra; they are complez rotations.

Compute 1/i and —%+—T3i .

C-16

-4

-

PERMUTATION MATRICES

The n xn identily matriz is

A I=I;=-e1 € ... en]

(=9,

O O O
© O = o
Q - OO o

The columns of I, are the azis vectors in R™.

Let

p=[p(1) p(2) ... p(n)']

be a permutation of the integers 1, 2, ..., n. The permutalion matriz associated with p is

| P: =[ep(l) ep(z) cos ep(n)] .

What is typical of 2 permutation Wifthat each integer 1, 2,\ -+« D Occurs ezactly once among the
integers p(1), p(2), ..., p(n). This is like shuffling a deck of cards. After the shuffle all the cards

remain. They just occur in a different.order.

More precisely, a permutation is a function from the set {1, 2, «» 0} onto the same set. We

present the function p by listing its function values (as a row):

p=[p) p2) ... »@)]-

There are n choices for p(1). After this there are n— 1 choices for P(2), then n — 2 for p(3), and so on.

So there are n! different permutations of {1,2,...,n}..

PM-1

Ezample. n =3, n! = 6.

p2—[1 3 2]HP2= 0
0

: [o

p3~[2 1'3]HP3= 1
- - 0'

p6=[3 2 1]HP6= 0

1

0
1
0

1
0 =

’

Otherwise put, a permutation matrix P has one 1 in each column and row,

follows that the transpose P’ is also a permutation matrix.

Let

‘Then

and

PM-2

and zeros elsewhere. It

AP=A[ep(l)‘ () -
=[A%u)A%0)

=[%m 2p(2)

- Postmultiplication by P shuffles the qolumns according 1o p.
AP=A(, p),

so we have to retain only p, not P!

Let . ™,
‘ o
x= 6:2 ER™.
&)
Theﬁ
ejx-{,, i=1,2,...,n,
and
_%u; (1) &)
o | PO || R || S
@ | [ws | | G

“p(n)]

Aé&{]
®p(n)]

In matlab, .

Premauitiplication by P shuﬁles.ihc rows according o p. In matlab,

| Plx= x(p) .

" Also, if Q is.a permutation matrix associated with the permutation q, then

‘Q'AP = A(q’ p)]

as well as

QA=A(g,:).
We have

PM-3

the Kronecker delfa. Thus also

00) () = i
and so
- -
°1'=(1)
€(2)

P’P = [ep(l) ep(z) “on ep(n)])

o’

_%MJ

=[%w%m]

We have

1 T
0 .

0 0 0 -0
0 1 0 o (=4 =2
= on= 1= .
0 0 0 0 ’
0 0.
| 00 T

In general the outer product e;¢f has a 1 in its ith diagonal position and zeros elsewhere. Thus

PM-4

— -

- %5(1)
el .
p(2)

PP’ =[ep(l) °p(2) s Cp(n)]

()
= €5(1) (1) T p(2) %p(2) +++ + €p () p(m)

-, =ejelteent... +eyel
=In'

In summary, permutation matrices P satisfy the important relations

[FP=1.=Fp|.

The product of permﬁtaiion matrices (of the same order n) is again ¢ permutation matriz (since a
shuffle of a shuffle is still a shuffle!). Let '

1-Q =[a1) %2) v)] :
be another permutation matrix. To which permutation -
r =[r(1) r(2) ... r(n)]

does
correspond? Let

so that

ai-:ep(i),' | 1_<_i$n .
Tﬁen the ith -column of R=AQis
, 2q() = ®pla) *
Thus R corresponds with the composition

PM-5

I=poq: i) = p(a(i))

of the permutations (functions) p and q.

FEzample,
‘r 0 o
p=[2 3 1]«-»?-_- 1 0 o
0 1
[1 0 0
q=[1 3 2]'4_.Q= 0 0 1
0 1 o
We have
P(1)=2, Q(1)=11
p(3) =1, q3)=2.
Thus
r(1)=p(q(i))=p(1)=2,
1(2)=p(a(2)) =p(3) =1,
1(3)=p(a(3)) =p(2) =3,
that is

'r=[2 1. 3].

Check by matrix multiplication:

[0 o 1 1
R=PQ=| 1 0 o
0 0 J 0
- -
0 1
=| 1 0
0
R 0 .

PM-6

=[62 el es] bnd Tr.
In general, if p — P, with what permutation s does S : = P’ correspond?

The identity permutation

that is
ei)=i (1<i<n)

corresponds with the identity matrix I.. " Since

hY P'P=1 =PP,
that is _ R
| SP=1 =PS,’
we have
sop=e=pos
that is

s(p@) =i=p6d)) (I<i<n)
Thus s is the inverse permutation of p.

Ezemple.

o
o
[

p=[2 3 1]HP= 1 0 0

Q
[
o

. We have
| p()=2, p2)=3 p@E)=1"
so the inve;se permutation s is given by,

| s(1)=3, s(2)=1, s@B)=2.

Moreover, the transpose

PM-7

corresponds with s.
Ezample.

Let n = 2m be even. The perfect shuffle pérmutatioﬁ is

p==[P(1) p(m+1) p(2) p(m+2) ..« p(m) p(2m)]-

For instance with n = 8,
S e=[1 2 35 4 5 § 7 4 |

What is the “perfect unshuffle,” i.e., the inverse permutation s?-

Forn =38,
s=[1 3 5 7 2 4 6 8]

In general,
s(i)=2i-1, 1<i<m,
=2i—n, r.n<i5n .
More on the perfect shuffle.

Oge of the most important tools in Linear Algebra is the “singular value decomposition” (svd) of
a (real or complex) rectangular matrix. The “svd” is the “workhorse” of matlab; and of Applied
Linear Algebra. For instance, it will allow us to solve very general linear least squares problems
“perfectly.” Any reliable algorithm for computing an “svd” depends on ﬁnding the eigenvalues and
eigenvectors of a Jordan-Lanczos matriz of the form
0 B
B 0

A=

with

PM-8

F. o B]]
@, B, . 5
- B= =4
o g | @=Y
i % |

‘upper bidiagonal with positive elements o and By.

We have
B 9 1
R 0'1
2
B o 3
B, «

5 2 ; 4

5 [
A‘= 3 4 5
o B 6

a, B, 7 .

a3 B3 '8

‘1 2 3 4 65 6 7 8

with the columns and rows in their “natural” order. Now, with P the permutation matrix associated

with the perfect shuffle permutation

p=[1 5 2 6 3 7 4 8]

we have
— -1 1
0 o .
C!l 0 ﬁl 9
By 0 @ 6
« ¢ B

P/AP = 2 2 3

Bz 0 o
. 7
Bz 0 oy, 4
Bs 0 o 8

e, 0. |

1 .5 2 6 3 7 4 8
real symmetric tridiagonal with positive next-to-diagonal elements and a zero main diagonal. It is
not hard to show that the eigenvalues of P’AP, and thus also those of A, occur in =+ pairs. The

positive ones are the singular values of B. More about singular values, later.
PM-9

Problem PM]1.

Execute the following matlab instructions to verify, expenmentally, that what I have said is true,
and also to _perceive the connections among singular values, 2-norms of matrices, and condition

numbers:

help mxb
a =rand(4,1); b=rand(3, 1);
B = mxb (a, b)
O=zeros(4); A=[O B; B 0]
p=[15 2 6 8 7 4 8]; A(p, p)
lam = eig(A); mu = eig(A(p, p));
format lofig, [lam mu]
lam = - sc}rt(- lam);
mu = —sort(—mu);
flam mu]
lam =lam(1:4); mu=mu(l: 4);
help svd |
s = svd(B);.
lam mu ¢
help norm

" norm(B), smax = max(s)
1/norm(inv(B)), smin = min(s)
help cond

cond(B), smax/smin

Problem PM2.
Repeat with B replaced by B : = nixhilbert(lO), O adjusted accordingly, and p replaced by

p=[1 11 2 12 3 13 ... 10 20] . (Use the 1 key!)

Remarks on matlab usage.
We have already noted that
A(a, p)=Q'AP,’
A(,p)=AP,

A(q,)=QP.

PM-10

The latter arises in connection with the partial pivoting strategy which is most frequenﬂy used in

practice: gfppr, gfpprm and gfpp. .

. Suppose.we have a full LU factorization
o QAP=LU= |4
of an n Xn matrix A (n pivots). By what we have s;id above we have the following equivalences:
Ax=b & QAP.-Px= Q’B

< LU-Px=Qb

& Le=Qb, U-Px=c.
The mat.-lab codes .

s c= g&f(L, b)
x = gfsb(U, ¢)
solve the last two systerrlxs when P=Q =1, and
| x = gfs(L, U, b)

combines them to solve LUx = b. In the general case when we have (nontrivial) permutations p and

q, we use
¢ =gfsf(L, b(q)) ,
x(p, :) = gfsb(U, c) ,
x(p, :) = gfs(L, U, b(q)) .
. We should be able to use x(p) in plgce of x(p,), but there is 2 bug in matlab! With partial

pivoting (by rows) we havep=e =[12 .. n] Then we can use x instead of x(p, :).
Reverse order rule for (conjugate) transposition (if the matrices are complez).

We have

A'B =[a}bi]

where, as usual,

PM-11

(Conjugate) transpose:

(w'BY =[(it |
| =[] = B

Now replace A by A’, and so also replace A’ by-A, to get

B (AB) =BA’[. "
This uses only the fact that
B T
(%) = ; 7§
L /.
=);I &m =x'y

for (complex) n-vectors x, y.

- PM-12

-
- ~

SUPPLEMENTARY PROBLEMS 1

Key facts:
F£1 .
‘ §
Ax:[al a ... am] .2

| m

_\J .- =31£1+a2€2+...+am£m
is an €c (linear combinat'ian) of the columns of A. Also

AB=A[b1 by ... bm]
=[Abl Ab, ... Abm],

provided A has the same number of columns as B has rows. Let

0 o0 3 .
1 0 1 0
1 -1 2
A:= y B:={ 2 1 0 0 |
1 2 1
3 0 0 1
0 1 0
1 1 1 1 1
1 1 1 1 1
C:= : y er=l |,
1 1 1 1 1
1 1 1 1 1
0 1
x:={ 1| y:=|=-1} ‘z:=| 0
1 0

L. Compute the bcs x+y, x—y, 2x, 3y, 2x — 3y, 2x — 3y +z.
2. Compute Ae;, Ae, and Aea.' Compute Be;, i=1, 2, 3, 4.
3. [Express x, y and 2x — 3y -+ z as fcs of €, e, and e_,;.

4. Compute Ax, Ay and Az. Do A(x+ y) =Ax+Ay and A(x—y) = Ax ~Ay? Does
A(2x —8y) = 2Ax—3Ay? Does A(2x— 3y +12) = 2Ax — 3Ay + Az? '

5. Compute Ab,, Abz.and Abs. Thus compute AB.
6. Show that C = eel (here we have e? : = f1111).

7. Compute BC, A(BC) and (AB)C. Are the last two the same matrix? (Answer: Yes, this is the
associative law for matrix multxphcatlon) Compute BC as (Be)eT (that’s easier than domg it -

directly!):

8. Partition

- -
0] o 3
A Ay 1] 2 1

0 1 OJ
B. B rllo 1 0
B= B“ B” =1 211 0 o

21 22

3100 1

| .

Compute M : = AB by block multiplication. Check with your result from problem 5 above.
9. Compute the outer products xxT, xyT, sz, yxT, ny, sz, sz, zyT, zz1,

10. Compute the scalar products xT X, xT Y, xTz, y X, yT Y, y z, sz, zly, 21z, Compute I x ||

I¥1i, and |iz]|,.

11. Compute AT, BT and CT (note that CT = C, i.'e., C is symmetric).

12. Compute A +BT. How does this matrix relate with AT + B?

SP-2

-

13.

14,

15.

16.

Compute BTAT, How does this matrix relate with AB? Compute CTBTAT (p.a.rentheses not needed
because of the assobciative law for matrix multiplication). How does this matrix relate with ABC?
It is known t'hat, for rcq? n-vectors x and y,
[yT| < J1x|] 2 I¥ll, (Cauchy’s sneguaziéy).
Thus, for x 3 0 and y 5 0,
Yix=lIxll, Iyl cos6, 0<o<m

6 is the (acute) angle between the.lines,_ through 0, generated by x and y (see the second picture on

page AO-7). For the vectors x, y and z above, find the angles between the lines in R® generated by:

2) xandy, -
b) xandz, B)
. ¢) yands.
Plot the following vectors in R%:
1 -1 2 2
Xy = Xo = y Xg= Y Xy = .
1 o |’ 2 9 371 4
Which pairs of these vectors are orthogonal? | ~
Same question for
1 2 0 5
xl — '_1] x2 — y X3 —_— 2) X4 -_— 1 y
2 1 "1 —~2

T 17,

but not in R?. Hint: for both problems: compuf.e XTX, with
X:=[X1 X2 X3 X4].

Some geometry of LTs (li.near transformations). Consider the following 2 x 2 matrices:

1 .
A1:= 1 0 ’ A2:= R

SP-3

c?
I
- o
e
Il

0] 13
. [2 A 1 1
LA B T J’ 870 1 oo |

They represent LTs from R? to R% For each matrix plot:

2)

b)

the image of the unit circle C: = {x ER?: '51 Iz +l£2 = 1} under A, starting with '
x=¢=[0 1JTa and running counterclockwise around the circle. The result will be an
ellipse in R? with center 0, :=1[0 0]T. See the m-file ellipse.m in

/ /stewart/gragg/ mal043/mfiles for how to build such a code.

The image of the unit square S:

4
4

R*? T2
ez & & L J e‘-;ez

Y N
< ‘\
— > - > >
o e) ﬁ 1

traversed counterclockwise, starting from 0, =[0 0]T. Use 81 points on each side of the square,
including the corners, but do not repeat the corner points in your list of points. Highlight, for
instance as in the code ellipse, every 20th point: 1, 21, 41, 61, 81, 101, Identify the images
under A of the successive points 0, e,, e; +¢; and e, on your plots, by hand say. These are just
0= A0, 2) = Ae;, 2; +a, = A(e; +e,) and 2, = Ae,. Call your code [d A] = parallelogram (A).
Here d is the determinant of A, d =det(A) in matlab. It is the area of the parallelogra.m

P : = AS. Check this out, roughly, when running your code on the above matrices. More
precisely, det A is the signed area of P. It is 2 0if P is traversed counterclockwise, <0 if it is

traversed clockwise.

SP-4

Remarks: A, reflects points in the line 61 = §5. A, reflects points in the line §;=0. A3 scales
the two variables £, and §2, but each differently. A, rotates points through the a.ngle T Agisa
“shear transformation,” a unit upper triangular matrix (ones on the main diagonal). As is

(moderately) ill-conditioned.

18. Ezperiment ﬁith the codes ellipse and parallelogram, using the key to execute s = ellipse and
d = parallelogram repeatedly. A is ilL.conditioned if the ellipses (and the parallelograms) are long and

narrow. For such matrices s is large and d small. Read the code elhpse v

o’

SP-5

R 4

L4

o0 dePdePdePdePdePdePde@dePdePd@dePdP

function s = ellipse(a)
s = ellipse(A):

If the two by two real matrix 2 is input this code plots the image in

"the y-plane of the unit circle in the x-plane generated by the linear.

transformation y = Ax. This is an ellipse. In higher dimensions it
is an ellipsoid (like a football in 3D). - If A is not input a random
matrix is selected.

" The output s = [s(1) s(2)]’' consists of the singular values of A.

These are the lengths of the semimajor and semiminor axes of the
ellipse, i.e. the half-lengths of the major and minor axes. You can
check this out, roughly, when running the code. Just type s = ellipse
and use the up arrow key to see lotsa ellipse. When the ellipse are
long and skinny the matrix A is ill-conditioned. This means that

cond A := s(l1)/s(2) is large.

One could build a version of this code which does this in 3D, using
matlab’s graphics. That would be a very nice project. Random three
by threes would tend to be more ill-conditioned than two by twos.
Also, -for some reason, random triangular matrices seem to be more
ill-conditioned than square ones. This can be “checked out* by
replacing A by A = triu(A) in this code after it is generated. -
Copyright (c) 4 April 1996 by Bill Gragg. All rights reserved.

ellipse calls no extrinsic functions.

begin ellipse
if nargin < 1
A = 2*rand(2) - 1;
else
[n m] = size(a);
ifm-~=2&n ~=2
error (’Input matrix not'two by two.’)

end

end

0:h:2*pi; c = cos(t); s = sin(t);
A*x;

2*pi/200; t

h
X {c; s]; Y

clg, axis(’square’), hold on, plot(y(1,:),y(2,:),’'x")
for k = 1:20:200
plot(y(1,k), ¥v(2,k), 'g*"), pause (1)
end
prlot (0,0, 'x**), - s = svd(a);

end ellipse

SP-¢

.Cp-—-“

0.8r
0.6

0.4

0.2

o
FeN
T

S
(00}
T

SP-8 -

s,

-0.05

o

-

n
T

-0.25

O
w
T

function x = rotsolve(A,Db)
~ = rotsolve(A,b): . (!

.is introductory matlab code uses the functions rot and gfsb to SOLVE

the "nonsingular® linear system Ax = b. We apply ROTATIONS to the
system to transform it to an equivalent upper triangular system Rx = c

and then backsolve this triangular system for x.

Copyright (c¢) 7 April 1991 by Bill Gragg. All rights reserved.
Revised 11 July 1997. '

rotsolve calls order, rot and gféb.

begin rotsolve ‘
n = order(A); % Gives an error if A is not square.
Triangularize A. Bagkward indexingvmakés the code elegant.
for i = 1:n\i
for j = n-1:-1:i

Rotate in the "(j,j+1)-plane" to annihilate A(j+1,i). .p and q
are (row) vectors of indices. We don’t need extra arrays for
R and c.- '

= i+1l:n; g = j:j+1; . [Q r] = rot(A(q,i));
g(q,i) = [r; 0]; A(qg,p) = Q'*A(q,p); b(gq) = Q’*b(q);
end
end

X = gfsb(A,Db);

I generally don’t like to clutter up codes with comments. If the
code is well written the comments distract one from seeing the flow
of the code. I often make two versions of a code, one with and the
other without comments. This code has lots of comments but the _
working part of the code is only 7 lines long. That’s efficiency in
in terms of "people time" and that’s what matlab is all about.

Of course there is more code in rot and gfsb. Writing code in this
modular way aids our understanding of algorithms. But codes run-
faster if they do not call others. '

end rotsolﬁe

Approximate total flops [n = order(é)I: N
Real case: 2n*3/3 adds + 4n”3/3 mults = 2n"3 flops.

Complex case: TBC.

Problems.

Count the real flops in the complex case. HINT. A complex add uses
two real adds and a complex mult, done in the usual way, uses four
real mults and two real adds. Thus a complex mult and -a complex add,
done in the usual way, uses four real mults and four real adads:

However, products of a. real and complex number use only-two real
™l e WAw mmimh An wa aave hv chaosinag one of ¢ or s-real in rot?

Prove that this code, with [r; 0] replaced by [r 0]’
in the complex case. HINT. Replace [r; 0] by [r 0]

diary rotsolve,

but now.use A = rand(7) + i*rand(7).

’
’

is NOT coirect
a?d repeat the

function [Q,r] = rot(z) .
[Q £] = rot(z): . ¢

arefully computes the 2 x 2 (complex) ROTATION Q = [c -8’; s c’] s0O
that Q'z = e_1 r is a scalar multiple of the first axis vector e_1.
Rotations are tools of the trade of Computational’Linear Algebra.

-We have |c|*2 + |s|*2 = 1. The matrix Q is unitary, Q’'Q = I = QQ’, so

z =: |xX| = |c -8’ r{ =: QR
Y s c’ 0}, ‘

a full QR factorizatiop of z,'as well as

z := |x| = lcl r
Y 18ty

a "Gram-Schmidt", or partial, QR factorization of z.

In other wdfds, the vector z is simply scaled to give the unit vector
[c; s] (when z\»= 0). , oo

We do not insist that r >= 0, as would be natural in the real case.
Instead we take one of- c or s >= 0. In particular one of c or s is
always real. In the complex case this makes the computation of.vectors
Q’w faster. For an introductory application see the code rotsolve.

Copyright (c) 28 October 1990 by Bill Gragg. All rights reserved.
Revised 11 July 1997. '

>t calls no extrinsic functions.

begin fot
x=12(1); y=2(2);

This computétion of r, ¢ and s is used to avoid artificial problems
caused by underflow and overflow. For instance the smallest positive
floating point number is about 5/107324. Thus if both x and y were

1/10%165 then r computed as sqrt(x*2 + y*2) would be zero, even
though the true value is much larger than the underflow threshhold.

if abs(x) < abs(y)

r = x/y; t=sgrt(l+ x'*r); c=r1x/t; 8 =1/t; T =y*t;

else

if x == 0
Q = eye(2)
end

r = 0; .return

~-e

r=y/x; t

sgrt(l + x’*r); ¢ =1/t; 8 = 1r/t; T = x*t;
- end
Q= [c -8"; 8 c’];

end rot

Problems.

PROBLEM SET: FORWARD AND BACKWARD SOLUTION
OF TRIANGULAR SYSTEMS. MATRIX MULTIPLICATION.

In problems 1—4, solve the given triangular system, Lc = b or Ux = ¢, by hand.

. Problem 1.
1 6 0 0 2
-1 1 06 o 1
' L = 3 b =
-1 -1 1 o0 0
-1 -1 -1 1 -2
Answer: c=][2, 3, 5, 8]’
.- Problem 2.
1 0 0 1 2
0 1 0 2 3
U= : c=
6 0 1 4 5
0- 0 0 8 8
Answer: x=(1, 1, 1, 1}.
Problem 3.
1 ¢ 0 o 0
1 1 0 0 -9
L= b=
1 3 1 0 -10
1 7 6 1 —44
Answer: ¢=[0, -2, —4,.-6)".
Fes

1

-

Problem 4.

’—1 1 1 1] ’-0-
0 1 -
U= 2 3 1, b= 2
0 0 2 6 -4
0 0 0 GJ —6_"

Answer: .x=[1, -1, 1, ;1]' '

Problem §.

.Fggz

/’E:""'-, .-

PROBLEM SET: GAUSS FACTORIZATION

Factor the following structured matrices A into A = LU, by hand, using the tableau, and check your work
by matrix multiplication. You will better appreciate computers after doing these problems; and they
really are interesting! You can find out the complete answers by executing [L. U g] = gfpn(4, 0) in
matlab. The required special matrix codes are in stewart/home/mal043/mfiles.

“Do Gauss” — NO PIVOTING. Note well the growth factors g.

Problem 1.
A 4 by 4 matrix due to Wilkinson:

W = mxwilkinson(4),

1 0 0 1
-1 0 1
W=
-1 -1 1 1
-1 -1 -1 1

What is the growth factor for mxwilkinson(n)?

Problem 2.
A Hadamard matrix of order 4:

H = mxhadamard(4),

1 1 1 1 i
1 -1 1 -1
H=
1 1 -1 -1
1 -1 -1 1
cEP

&1

Problem 3.
“Pascal’s matrix” of order 5:

P = mxpascal(5),

1 1 1
1 2 3 4 s
P=| 1 3 ¢ 10 15
1 4 10 20 35
1 5 15 35 70
L N

This is an example of a Cholesky factorization. We have U=1L so that A =LL/, with L having positive .

diagonal elements. Also, the Cholesky factor L is a part of Pascal’s triangle, written another way.

Problem ;1

The (tridiagonal) “negative second difference matrix” of order 5;

T = mxtsd(5),
[2 0 0 o o]
-1 2 -1 0 0 3
T= 0 -1 2 -1 (The second most important matrix
0 0 -1 2 _3 in the Whole Wide World)
8 0 0 0 -1 2 _‘

Note that the factorization process is very “cheap” for tridiagonal matrices. How cheap!

You can modify the factorization T = LU in a simple way, by an “i;terior diagonal scaling,” to get

another Cholesky factorization T = R’ R, with R upper triangular,

D be the diagonal matrix formed from
:=LD and R=D"U. Thus one
to adjust for this, divides the rows of U

The diagonal elements of U, the pivots, are all positive. Let
their (positive) square roots. Then T = LDD-1U = R'R with R’
multiplies the columns of L by the square roots of the pivots and,

by these square roots.

CFP
752

[

Problem §&.
The “negative periodic second difference matrix® of order 5: ‘

T = mxpsd(5),

[2 1 0 o -1
1.2 -1 o o0
T=| 0 -1 2 -1 o
0 0 -1 2 -1
-1 0 0 -1 2

The last diagonal element of U will be zero! This can also be modified slightly to be a Cholesky

factorization, T = R'R, with the last diagonal element of R zero.

Problem 6.
The “min matrix” of order 5:

M = mxmin(5),

1 1 1 1 1
1 2 2 2 2
M= 1 2 3 3 3
1 2 8 4 4
1 2 3 4 .5
Another Cholesky factorization!
Problem 7.
The “max matrix” of order 5:
M = mxmax(3),
1 2 3 4 5
2 2 3 4 5
M=| 3 3 3 4 5
4 4 4 4 5
5 5 5 5 §
GFP

Problem 8.
A 4 by 4 Vandermonde matrix built from the “abscissas® 1,2,3 4.

\Y = mxvandermonde([l1 2 3 4)),

[1, 1 1]

1 2 3 4 .

V= - o 16 (Vis of theoretical interest)
1 8 27 ¢4 J

Problem 9.
The 3 by 3 Hilbert matrix:

.. L H= rats(mxhilbett(3)))

[1 T
1 2 3
= 1 1 1
H=l 53 3 %
1 1 1
3 4 5]

Problem 10.

The “idft matrix” of order 4 (the most important matrix in the Whole Wide World):

W = mxidft(4),
1 1 1
- 1 I =1 i .
= | t{—
1 -1 1 3 (s.qr()
1 4 1 J

Complex matrices rarely arise in practice but, when they do, they seem to be important. mxidft(n) is
probably the most important matrix of all time, the matrix used in the fast Fourier transform. Typical
orders are n = 1024 and n = 4096!. Here We use the case n =4 as 2, fairly massjve (!), drill in complex

arithmetic.

GEP. R

)

=

Complete pivoling for size or, more precisely, pivoting to prevent growth.

This kind of pivoting should not be confused with the term “pivoting” that is used in the field of

linear constrained optimization (linear programming), nor should the term “programming” which is used

_ in that field be confused with the programming of computers! Confusing, isn’t it?

Problem 11.

Factor the Wilkinson matrix of problem 1 using complete pivoting: Q'AP=LU. Wh;.t is the growth

factor now? Answer: g = 2!

Problem 12.

Factor Q'AP = LU for the following matrix A in three wa.js,. using no pivoting, complete pivoting,

and any other pivot scheme you choose.

1
2
3
4

™ T R~)

- -

Pivots are, by definition, not zero. How many pivots are there i_n each case? We will ultimately show
that, for a given matrix A, every pivot scheme will always find the same number of pivots, and this no
matter how large the matrix Al ‘

These are examples of the
LU Theorem. Let A be n by m with A # O. There are permutation matrices P and Q, and an integer

r with 1 <=t <= min(m, n), so that
QAP=LU,

with L unit lower trapezoidal with r columns, and U upper trapezoidal with nonzero diagonal elements
(and r rows). :

Now you have “paid your dues” so you can use matlab.

Problem 13. - .

Factor the 8 by 8 versions of the matrices in problems 1—11 with matlab. Use all three codes: gfpn,

gippr and gfpc. Do not oulput the factorizations! Compare the growth factors g obtained by these three
pivot strategies. Check the factorizations by displaying the respective scaled errors

GFP |
B85

€n = norm (A — L+U)/a r
€p = norm (A(q, :) - L+U)/a
€c = norm (A(q, p) — L+U)/a

where
2=norm(4A).
'Simultan‘eously, record the condition numbers, cond A, of these Matrices. For instance the “one liner”
cond(mxhilbert(8)) gives the condition number of the 8 by 8 Hilbert matrix.

Repeat with n = 8 replaced by n = 16, or do these simultaneously.

(Not so) roughly spea.ki.ng one can expect to lose log10(condA) decima) digits of accuracy when
solving Ax =b for x on a computer, for square matrices A. We always have cond A >=1. Ais ill-
conditioned if cond A is large. One might think that large growth andlil]-conditioning are' related. The
following example shows that this is not true.

We have g = 221 for W = mxwilkinson(n) and partial Pivoting, but g = 2 if complete pivoting is
used, it appears. (One can prove this!) What is cond(rmnvilkinson(200))? how long does it take matlab
to compute it? How about n = 5007

Problem 14.

Factor the matrix in problem 12 by using matlab and &fpe, and check that ec is of the order of

- magnitude of the machine precision eps.

Problem 15.

Execute “eps” and “binrep(eps)”, or just “br(eps)”. Then execute “eps = ma;chprec@”l to replaée
. eps by its “correct” value. We won’t have to know the fine details concerning eps.

CFp- T N

Lid

